Ruka kwenye maudhui



Andre Berndt, PhD, Assistant Professor, Department of Bioengineering, University of Washington

Massively parallel, high throughput engineering of optogenetic biosensors for neuronal signaling

Florescent, genetically encoded proteins have revolutionized the study of brain cells and neural circuits. By literally lighting up in the presence of specific neural activity, which then can be recorded by microscopes and light fibers in living brains, this tool has unlocked many mysteries and allowed researchers to visualize brain activity and neural pathways. But there has been a bottleneck: Developing and identifying the best sensor for each experiment. These encoded proteins need to react in the presence of only specific stimuli, in some cases might need to be highly sensitive, in other cases may need to fluoresce for a longer period of time, or an experiment may need two sensors to see how multiple neurotransmitters interact.

In the past, each sensor had to be genetically modified, produced, and tested individually. Perhaps only a few dozen or hundred could be compared, and researchers chose the best option from a small sample – not knowing if there was a better, more precise option available. Dr. Berndt has developed a process for developing and testing very large numbers of optogenetic biosensors simultaneously, aiming for screening more than 10,000 per day and building a massive library of biosensors that can give researchers access to precisely engineered proteins they can use to run ever-more specific experiments.

The technology uses rapid genetic engineering to create large numbers of variants of a biosensor, then places individual variants into a microwell array. The sensors are exposed to neuropeptides – currently, Dr. Berndt is focusing on ligand-specific opioid sensors – and optical sensors then read the microarray, detecting the brightness and other variables of each variant, and selecting the best options for further testing. Over the course of 2 years, some 750,000 biosensors will be tested and the process for their screening refined, advancing research into opioid actions in the brain and providing a versatile approach other researchers can use for their experiments.

Ruixuan Gao, Ph.D., Assistant Professor, Department of Chemistry and Department of Biological Sciences, University of Illinois Chicago

Sub-10 nm spatial profiling of synaptic proteins and RNA transcripts with high-isotropy expansion microscopy using a highly homogenous hydrogel constructed from tetrahedron-like monomers

To examine things that are very small – like the neurons and their synapses in the brain – researchers use powerful microscopes. But there is another approach that can yield impressive results: literally expanding a tissue sample and the cells within it by use of a special swellable hydrogel through a process called expansion microscopy. The hydrogel binds to different molecular components of cells and expands, ideally holding all the component parts in the same relative position to one another, creating a larger and more accessible sample to study – in principle, similar to writing on a balloon, then inflating it.

However, the current hydrogels used for this process have some drawbacks when it comes to studying minute structures in the brain. The margin of error in holding the relative position of molecules isn’t as precise as desired. New gel that potentially overcomes this issue reacts poorly to the heat used in denaturing and treating tissue samples. And it can limit the use of fluorescing biomarkers. Dr. Gao aims to improve the technology by developing a new type of “tetra-gel”, which is chemically engineered to have a tetrahedron-shaped monomer that is extremely uniform as it expands, resists heat and allows the use of bioluminescent markers. He will also develop chemical linkers, specialized molecules that will bind different molecular components of the sample to the gel. The goal is to have an expanded sample that matches the fidelity of the original to within 10 nanometers, matching the resolution of powerful microscopes.

Dr. Gao’s research has already identified promising compounds with which to develop this tetra-gel. As his lab develops and refines it, he will apply its abilities to the study of, for example, early-onset Parkinson’s Disease affected brains. Studying the exact structure of these brains has been challenging with traditional methods, and the goal is to precisely map synaptic proteins and associated gene transcripts, helping uncover how the early onset PD brain is molecularly structured.

Mirna Mihovilovic Skanata, Ph.D., Assistant Professor, Physics Department, Syracuse University

Two-photon tracking technology to read and manipulate neural patterns in freely moving animals

The gold standard for neuroscientists is to be able to record and manipulate what is happening in the brain at a high level of precision, over a large area, while a living animal is behaving freely and naturally. Over the years, technology has allowed researchers to move towards this ideal, but always with some compromises. Often, animals needed to be head-fixed, and/or have intrusive sensors or optics implanted in their brains, and often high-fidelity recording or manipulation was limited to a relatively small area of the brain, while broad-based recordings and manipulation was less precise.

One of the key challenges is simply the motion and distortion of the brain and neurons in a freely-moving animal. But Dr. Skanata is developing a new two-photon tracking technology that allows her to track multiple individual neurons in a moving animal without any invasive implants, and optically activate or manipulate those neurons. The model used is fruit fly larvae, which are naturally transparent, and the system Dr. Skanata will continue to develop uses two-photon microscopes (which allow very precise targeting) coupled with an ingenious algorithm that can rapidly detect the motion of individual neurons and adjust the position of the subject on a moving stage to keep it centered under the microscope. The system calculates the relative positions of multiple neurons, adjusts for the motion and deformation of the brain during movement, and tracks neural activity across a large area.

When tracking an animal that has been modified so that neurons can be activated when exposed to optical light, the system lets researchers switch on neurons with high precision during natural activity. Importantly, the system Dr. Skanata is developing has the capability to independently control two laser beams, so it can track multiple areas simultaneously, and will even allow tracking activity among individuals, allowing insight into neural activity during group encounters.


Timothy Dunn, Ph.D., Assistant Professor, Department of Biomedical Engineering, Duke University

Multi-scale Three Dimensional Behavioral Quantification in Individuals and Social Groups

Current methods of measuring movement of freely behaving animals have limitations: Highly detailed observations of small movements of an animal (a single digit, for example) require restricted ranges of motion. Studying freely moving behavior in 3D space often means limiting resolution, perhaps only tracking overall position, or relying on an observer’s description. Automatic video tracking in animals typically requires an unnatural, simple environment, and body parts not visible to cameras aren’t tracked accurately. High-resolution Artificial Intelligence (AI) predictions over large three-dimensional spaces using volumetric spatial representation, a technique recently developed to overcome these issues, require massive computing power. Adding multiple animals for social observations introduces additional issues.

As a result, there is poor availability of the most desired data: High-resolution, automatic tracking of animals in 3D space performing natural behaviors, alone or in groups, and quantification of that motion in a standardized format. Dr. Dunn is working on a new approach that aims to bring that ideal closer. Building on learnings from a 3D geometric machine-learning algorithm his team used to greatly improve the accuracy of predictions, Dr. Dunn and his team are now working on adaptive recurrent image sampling (ARIS) that combines images from multiple cameras to build a model that can measure and predict body position on many scales, even when a part (such as an arm or foot) isn’t directly visible.

ARIS selectively improves the resolution of fine-scale body features, and uses predictive modelling based on what it knows of its subject (arrangement and length of limbs, how they are connect, how they move, etc.) – learned first by parsing enormous amounts of training data from freely-behaving rats and then fine-tuned using training data in other species – to focus on the portion of space where the body part is likely to be. This uses far less computational power than previous 3D volumetric tools. In his research, Dr. Dunn will implement ARIS and record data at multiple scales, from overall position and posture down to the movement of fine features of the hands, feet, and face. Further research will explore its effectiveness with multiple animals interacting. This ability to measure behavior in a new, more precise way has broad implications for the study of neurological disorders that affect movement, linking brain activity to behavior, and studying social interactions.

Jeffrey Kieft, Ph.D., Professor, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine

A New Technology to Control the Transcriptome

Messenger RNA, or mRNA, is recognized as a vital player in the life and health of cells. These RNA molecules are the templates to make protein, and are created within cells to carry instructions to the protein-making machinery, then are destroyed by enzymes. The totality of mRNA an organism expresses is called its “transcriptome.”

Deficiencies in mRNA and non-coding RNA (ncRNA) are linked to certain neurodegenerative and neurodevelopmental disorders. If there is too little of a specific mRNA or ncRNA in the transcriptome, certain cellular functions may be degraded or disabled. Dr. Kieft is exploring a novel way to manage the transcriptome by slowing the decay of mRNA and ncRNA. Knowing that some enzymes that destroy the RNAs essentially “chew” it from one end to the other, Dr. Kieft used his understanding of how RNA molecules are structured and fold on themselves to create an engineered piece of exoribonuclease-resistant RNA (xrRNA) that, when introduced to compatible mRNA or ncRNA, combines and folds to form a “blocking” structure, literally changing the shape of the RNA by inserting a protrusion that stops the enzymes in their tracks.

By slowing the decay of the target mRNA and ncRNA, Dr. Kieft sees the opportunity to manage their abundance within the transcriptome. Engineered xrRNAs could recognize just specific targets, link up with them, and create the protection, so researchers can increase the proportion of the target without changing how much is created. The approach has the advantage of being less disruptive to the host cell than unnaturally boosting mRNA, and the precision with which xrRNA can be engineered offers the potential to target multiple RNAs at once, and possibly even allow fine-tuning by precisely managing the rate of decay. Dr. Kieft sees this application, born of basic science studying RNA, as a potentially powerful research tool for neuroscientists, and perhaps even the foundation for therapies in the more distant future.

Suhasa Kodandaramaiah, Ph.D., Benjamin Mayhugh Assistant Professor, Department of Mechanical Engineering, University of Minnesota Twin Cities

Robot Assisted Brain-Wide Recordings in Freely Behaving Mice

Neuroscientists studying brain activity during behaviors usually have to make a trade-off: They use miniaturized head-mounted neural sensors that are light enough to allow a subject animal to behave freely, but are lower resolution or can’t monitor the whole brain. Or they use more powerful tools, which are far too heavy for subject animals and require other solutions, like immobilization while letting animals move on a treadmill, or even using virtual reality experiences that nonetheless limit the behavior of a subject.

Dr. Kodandaramaiah is tackling the challenge with a robotic cranial exoskeleton that carries the weight of neural recording and monitoring hardware while still allowing the subject (in this case a mouse) to rotate its head in all three degrees: a full 360 degree turn in the yaw (horizontal rotation) axis, and about 50 degrees of motion in the pitch and roll axes, while moving around in an arena. The robot has three jointed arms arranged in a triangular configuration, suspended over the subject and meeting at the point of mounting on the head. Sensors in the mount will detect what motion the mouse is making and direct the robot to enable the motion with as little resistive force as possible, allowing the mouse to turn and move within an arena typically used for neuroscience experiments with all the necessary sensory equipment and wires from the implants supported by the robot.

Taking out the need for miniaturization allows researchers to use whatever state-of-the art hardware is available, meaning a robot can theoretically be upgraded to use the latest technology soon after its introduction. To get to that point, Dr. Kodandaramaiah’s team will go through several steps – engineering the exoskeleton; engineering the head-stage with its needed sensors plus high-density electrodes and cameras for external observation of eyes, whiskers and more; performing benchtop testing; tuning the robot to the inputs a mouse can deliver; determining how to introduce probes; and finally making live recording. With this mechanical underpinning, Dr. Kodandaramaiah hopes to help researchers get closer to the state where they can make detailed brain-wide neural recordings of freely behaving subjects over long timescales.


Eva Dyer, Ph.D., Assistant Professor, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University

"Comparing Large-Scale Neural Datasets Across Time, Space, and Behavior”

The ability to observe and record neural data over large parts of the brain has resulted in enormous amounts of data, making it possible to find patterns in the data that can explain how many neurons work together to encode information about the world. Even with new advances in finding low-dimensional patterns in datasets, it is still challenging to compare multiple large-scale recordings, whether it be over long periods of time, or across different individuals solving the same or similar tasks, or across disease states. Dr. Dyer’s experience using machine learning (ML) to decode brain activity has led her to a novel solution to identify patterns in multiple large neural datasets.

Dr. Dyer’s work involves creating machine learning algorithms to extract meaningful information from neural datasets, which are labelled to identify whether the animal was asleep, awake, foraging, or engaging in various motions or behaviors. New cryptography-inspired mathematical rules guide the algorithms to identify similar patterns in separate data sets, looking specifically to match the neural activity generated by different brain states as a starting point for bringing the data into alignment. Aligning neural activity can show how neural patterns are related to the behavior and state of the subject as well as prevent corruption by noise, and provides a critical stepping-stone for more powerful analysis techniques.

Dr. Dyer’s second aim will help researchers refocus on single neurons to understand how they contribute to the overall changes in neural activity, and whether they can be used to predict specific brain states. The research will further explore whether differences in behaviors can be traced back to specific cell types, and how the differences seen across datasets can be used to characterize variation across individual animals. The ability to decode and compare large neural datasets will prove invaluable in neurological research by indicating how neurodegenerative disease affects the brain’s processing of information.

Rikky Muller, Ph.D., Assistant Professor of Electrical Engineering and Computer Sciences, University of California – Berkeley

"A High-Speed Holographic Device for Optogenetic Control of Thousands of Neurons”

Optogenetics – genetically modifying neurons to be light-sensitive so researchers can activate or silence them at will – has revolutionized neuroscience research. Paired with spatial light modulators that shape light into 3D holograms, researchers can individually control many neurons distributed throughout a three-dimensional region of a brain katika vivo. But until now, there has not been a holographic projector able to control neurons at the speeds found in the brain naturally.

Dr. Muller is designing and building a holographic projector to solve this issue. Her device will stream holographic light images at rates of 10,000 frames per second (Hz). Many current-generation TVs refresh 60 frames per second, for comparison, and the fastest commercially available holographic tools top out at 500 Hz. This high refresh rate is necessary to replicate natural neural signaling, which involves action potential times of about 1/1,000th of a second (equivalent to 1,000 Hz when considering refresh rates.) Additionally, Muller aims to target thousands of neurons with pinpoint accuracy, and just as higher rates in TVs result in sharper images, a 10,000 Hz hologram will offer greater precision.

Dr. Muller, an electrical engineer who focuses on neurotechnology, regularly consults with neuroscientists as she designs, tests, and builds the device to ensure it serves their needs. The device will use a micromirror array, which will sculpt 3D patterns of light to specific locations and depths through the electrical actuation of miniature mirrors; the light is then relayed through a series of lenses. The project will first design and fabricate two arrays – a smaller array for testing and proof of concept, and a larger format array, along with the associated drivers and controls that will be used for measurement and calibration. Finally, Dr. Muller’s team will produce a full-featured spatial light modulator. It is hoped that this tool will give researchers unprecedented ability to control and test neural connectivity.

Kai Zinn, Ph.D., Howard and Gwen Laurie Smits Professor of Biology, California Institute of Technology

"Modular Enzymatic Barcoding”

Many neuroscience experiments involve the analysis of antibody and receptor binding to cell surfaces. Also, an understanding of neural development and function requires knowledge about katika vivo interactions among cell surface proteins. High-throughput experiments involving proteins are usually time-consuming and complex since every protein has different biochemical properties. To help open new opportunities for neuroscience research, Dr. Zinn and his team are developing a modular way to “barcode” different proteins, providing researchers with a flexible toolkit.

Barcoding in its simplest form involves inserting a genetic marker into molecules and then seeking out those markers after the experiment to determine which molecules are localized together. It has been used with nucleic acids with great success. Proteins are more complex, however, and there was no way to barcode the thousands of proteins of interest to researchers without resorting to chemical crosslinking, which often alters protein function. Dr. Zinn is overcoming this challenge with the use of fusion proteins containing high-affinity protein binding modules attached to “HUH-domain” enzymes, which can covalently couple themselves to barcode oligonucleotides. The binding modules allow the barcodes to be attached to antibodies, biotinylated proteins, and proteins with covalent binding tags. This provides access to most of the proteins of interest to neuroscientists. The project also involves building nanoparticle scaffolds with 60 binding points that can be simultaneously attached to barcodes and to proteins of interest. These scaffolds will enhance the observability of interactions – weak interactions are made stronger when multiple proteins on each structure interact.

Dr. Zinn’s project will entail developing the protocols and processes involved in conducting several types of high-throughput single-cell sequencing experiments that will provide information on proteins. These include experiments using barcoded antibodies to observe the expression of specific surface receptors on a cell, to observe changes to cells when exposed to certain proteins, to visualize large numbers of antigens in brain tissue, to screen interactions of large numbers of proteins, and to identify receptors for “orphan” proteins. Thanks to its modularity, simplicity, and the ability to allow multiple proteins to interact at once, Dr. Zinn expects his barcoding system will enable and accelerate these and many other types of neuroscience experiments.


Gilad Evrony, MD, Ph.D., Msaidizi wa Profesa, Kituo cha Vizazi vya Binadamu na Genomics, Deps. ya Daktari wa watoto na Neuroscience & Fiziolojia, Afya ya Langone ya Chuo Kikuu cha New York

"UCHAMBUZI: Teknolojia ya aina moja ya kiini-kiini cha uchunguzi wa kiwango cha juu cha Ufuatiliaji wa Binadamu wa Binadamu"

Ni ufahamu wa kawaida kuwa kila mwanadamu anaanza kama seli moja na seti moja ya "maagizo" ya kemikali, lakini maelezo ya jinsi seli hiyo inakuwa trilioni - kutia ndani makumi ya mabilioni ya seli kwenye ubongo - bado haijulikani. Utafiti wa Dk. Evrony unakusudia kukuza teknologia inayoitwa TAPESTRY, ambayo inaweza kuangazia mchakato huu kwa kujenga "mti wa familia" wa seli za ubongo, ikionyesha ni seli gani za progenitor zinazoleta mamia ya aina ya seli za kukomaa kwenye ubongo wa mwanadamu.

Teknolojia hiyo inaweza kutatua mambo kadhaa muhimu yanayowakabili watafiti wanaosoma ukuzaji wa ubongo wa binadamu. Njia muhimu ya kusoma maendeleo kwa kufuata safu za safu (kuanzisha alama katika seli za wanyama wasio na umri na kisha kusoma jinsi alama hizo zinavyopitishwa kwa kizazi chao) haiwezekani kwa wanadamu kwa sababu ni vamizi. Kazi ya Dk. Evrony ya hapo awali na wenzake imeonyesha kuwa mabadiliko ya kawaida yanayoweza kutumiwa yanaweza kufuatia safu kwenye ubongo wa mwanadamu. TAPESTRY inakusudia kuendeleza na kuongeza njia hii kwa kutatua mapungufu kadhaa ya njia za sasa. Kwanza, utaftaji wa ukoo unahitaji kutengwa kwa kuaminika zaidi na ukuzaji wa idadi ndogo ya DNA ya seli moja. Pili, ufahamu wa kina wa ukuzaji wa ubongo wa mwanadamu unahitaji kuwa wa gharama nafuu kuruhusu kuorodhesha maelfu au makumi ya maelfu ya seli za kibinafsi. Mwishowe, inahitajika pia kupanga ramani za seli - sio tu kuona jinsi seli zinahusiana sana, lakini pia ni aina za seli gani. TAPESTRY inataka kutatua changamoto hizi.

Njia ya Dk. Evrony inatumika kwa seli zote za wanadamu, lakini ni ya kupendeza katika shida za ubongo. Mara tu mizozo ya afya ya ubongo ikipangwa, inaweza kutumika kama msingi wa kuona jinsi maendeleo ya ubongo hutofautiana kwa watu wenye shida mbali mbali ambazo zinaweza kutokea katika maendeleo, kama ugonjwa wa akili na ugonjwa wa akili.

Iaroslav 'Alex' Savtchouk, Ph.D., Profesa Msaidizi, Idara ya Sayansi ya Biomedical, Chuo Kikuu cha Marquette

"Kuinua kwa haraka kwa Usumbufu wa Kiasi cha Ubongo kupitia Njia ya Tambrangular ya tagi ya wakati"

Mbinu za kisasa za mawazo ya ubongo zinaruhusu uchunguzi wa safu nyembamba ya ubongo, lakini kufikiria shughuli nyingi za ubongo katika nafasi 3-zenye nafasi - kama vile kiwango cha ubongo - imethibitisha kutisha. Dk. Savtchouk ameandaa mbinu ambayo inaruhusu watafiti kuona kile kinachotokea sio juu ya uso wa ubongo tu, bali kina ndani na katika azimio la juu la kidunia la wakati kama zamani.

Mchakato wa kimsingi - microscopy-mbili - inachukua shughuli za ubongo kwa kutafuta fluorescence katika seli za ubongo zilizobadilishwa genetiki za wanyama wa maabara. Na laser moja, habari ya kina inirekodiwa polepole sana. Na mihimili miwili ya laser, watafiti kimsingi wanapata maono ya binocular - wanaweza kuona kile kilicho karibu na mbali zaidi, lakini bado kuna "vivuli" vya kuona ambapo hakuna kitu kinachoweza kuonekana (kwa mfano, wakati mtu anaangalia makali ya bodi ya chess, vipande kadhaa inaweza kuzuiwa na vipande vilivyo karibu.) Dk. Savtchouk anasuluhisha suala hili na nyongeza ya mihimili miwili ya ziada ya laser, ambayo inatoa maono ya quad na inapunguza sana matangazo ya kipofu. Yeye pia anafuatilia muda wa lasers - ambazo hupunguka haraka - kwa hivyo watafiti wanajua ni laser gani ambayo iliona ni shughuli gani, muhimu kwa kujenga mfano sahihi wa milo tatu.

Mradi wa Dk. Savtchouk kwanza unajumuisha kubuni mfumo huo kwenye simuleringar za kompyuta, kisha kudhibitisha matumizi yake na mifano ya panya. Kusudi lake ni kukuza njia za kusasisha darubini zenye picha-mbili kupitia nyongeza ya mihimili ya laser na kupitia visasisho kwa vifaa na programu, kuruhusu maabara kufaidika na teknolojia bila kulipia mfumo mpya.

Nanthia Suthana, Ph.D., Profesa Mshiriki, Idara ya Saikolojia na Sayansi ya Ufuatiliaji, Chuo Kikuu cha California Los Angeles

"Kurekodi bila waya na isiyo na mpango na Kichocheo cha Sisitizo la Ubongo wa kina kwa Kusonga Kwa Wanadamu kwa Hila Kwa Imri ya Ukweli (au Umechangiwa)"

Kusoma hali ya mishipa ya binadamu kunaleta changamoto nyingi - akili za kibinadamu haziwezi kusomwa moja kwa moja kama akili za wanyama, na ni ngumu kuorodhesha (na kurekodi matokeo ya) hali katika mazingira ya maabara. Dk. Suthana anapendekeza kukuza mfumo ambao hutumia ukweli halisi na uliodhabitiwa kuunda mazingira ya mtihani wa kweli kwa masomo yake. Yeye hutumia data iliyorekodiwa na vifaa vya ubongo vinavyoweza kuingizwa katika matibabu ya kifafa.

Mamia ya maelfu ya watu wana vifaa hivi vya kupandikizwa, na vifaa vingi vilivyowekwa huruhusu programu isiyo na waya na uokoaji wa data. Njia ya Dk Suthana inachukua fursa ya mwisho - vifaa hivi hurekodi kila aina ya shughuli za kina za ubongo, na anaweza kugundua data iliyorekodiwa wakati masomo yanaingiliana katika majaribio ya msingi wa VR au AR. Kwa kweli, masomo yanaweza kusonga kwa uhuru kwani hubeba ufuatiliaji wa shughuli za ubongo na kifaa cha kurekodi pamoja nao. Ukamataji wa mwendo na kipimo cha biometriska kinaweza kufanywa wakati huo huo, kukusanya picha kamili ya majibu.

Dk. Suthana anafanya kazi na timu ya kimataifa ili kufanya mfumo huo ufanye kazi; Timu hii ni pamoja na wahandisi wa umeme, fizikia, na wanasayansi wa kompyuta. Ukweli wa msingi kama latency ya ishara unahitaji kuanzishwa ili data inaweza kusawazishwa na kupimwa kwa usahihi. Mwishowe, anaamini kwamba wanadamu wenye tabia ya kushirikiana na maelewano yanayowezekana kabisa wataruhusu watafiti kuelewa kwa usahihi zaidi jinsi ubongo unavyofanya kazi. Kwa kuongezea maswali ya msingi ya neva - kama ni shughuli gani za ubongo na majibu ya mwili yanafuatana na vitendo fulani au athari za kuchochea - mfumo unaonyesha ahadi ya utafiti katika machafuko ya dhiki ya baada ya kiwewe na hali zingine ambapo vichocheo vya mazingira vinaweza kuelekezwa katika mazingira ya kudhibitiwa ya kawaida.


Michale S. Fee, Ph.D., Glen V. na Profesa Phyllis F. Dorflinger wa Hesabu ya Maarifa na Mfumo wa Sayansi, Idara ya Sayansi ya Ubongo na Utambuzi, Taasisi ya Teknolojia ya Massachusetts; na Mtafiti, Taasisi ya McGovern ya Utafiti wa Ubongo

"Teknolojia mpya za kupiga picha na kuchambua trajectories za hali ya neural katika uhuru wa tabia za wanyama wadogo"

Kujifunza shughuli za neural katika akili za wanyama ni changamoto ya muda mrefu kwa watafiti. Mbinu za sasa si za kutosha: ukubwa wa sasa wa microscopes unahitaji wanyama kuzuiwa katika shughuli zao, na microscopes hizi hutoa uwanja mdogo wa mtazamo wa neurons. Kwa kufanya mafanikio katika miniaturization ya microscope, Dk Fee na maabara yake wanaendeleza zana zinazohitajika kuona nini kinachoendelea katika ubongo wa wanyama wakati mnyama ni huru kufanya tabia za asili.

Microscope iliyopigwa kichwa inaruhusu Dk Fee kuchunguza mabadiliko katika akili za ndege wadogo kama wanajifunza kuimba nyimbo zao. Wanaposikiliza, kurudia, na kujifunza, Dk. Fee anaandika hati za neural zinazoendelea kama sehemu ya mchakato huu wa kujifunza tata. Mzunguko huu unahusiana na mzunguko wa binadamu ambao huunda wakati wa kujifunza ngumu ya utaratibu wa magari, kama kujifunza kupanda baiskeli, na huvunjika katika hali fulani ikiwa ni pamoja na ugonjwa wa Parkinson. Kutokana na lengo lake la kuandika mchakato wa kujifunza asili, ni muhimu sana kuweza kurekodi shughuli za neural wakati wa tabia za asili.

Mbali na miniaturization, microscope mpya itakuwa na uwezo wa kurekodi utaratibu wa neurons kubwa zaidi kuliko mbinu nyingine kutumika katika wanyama wa uhuru-tabia na itakuwa paired na data mpya uchambuzi ambayo itawawezesha watafiti kufanya uchunguzi kwa wakati halisi na kurekebisha yao majaribio, kasi ya mchakato wa utafiti. Itakuwa na maombi ya haraka na pana kwa watafiti kuchunguza tabia zote za ubongo katika wanyama wadogo.

Marco Gallio, Ph.D., Profesa Msaidizi, Idara ya Neurobiolojia, Chuo Kikuu cha Kaskazini Magharibi

"Uunganishaji wa wiring tena katika ubongo ulioishi"

Utafiti huu unalenga kupanua ufahamu wetu wa jinsi akili zinavyofanya kazi kwa kuruhusu wanasayansi kuchagua kikamilifu uhusiano wa synaptic na kuhamasisha uhusiano mpya kati ya neurons. Wiring hii ya ubongo itawawezesha watafiti kuelewa kwa usahihi uhusiano ambao una jukumu katika subsets maalum ya athari za neva.

Kila neuroni ndani ya mzunguko wa ubongo unajumuisha malengo mengi. Kila lengo linaweza kuwa na kazi ya pekee, na kwa hiyo inachukua taarifa sawa zinazoingia kwa njia tofauti kabisa. Kwa mfano, baadhi ya neurons maalum katika ubongo kuruka ubongo kubeba habari juu ya mazingira ya nje ambayo hutumiwa haraka mbali na vitisho vya karibu (innate tabia), lakini pia kuzalisha vyama vya kudumu kwa njia ya kujifunza.

Teknolojia iliyopendekezwa itawawezesha watafiti kuzingatia uhusiano ambao ni muhimu kwa kila mchakato kwa kuondoa vipindi vya synapses kwa kuchagua wakati wa kuacha uhusiano wowote. Mradi unalenga kutumia uhandisi wa maumbile ili kuzalisha protini za ubunifu ambazo zitashirikiana na kukataa au kivutio / kuzingatia kati ya washirika wanaofafanuliwa na synaptic katika ubongo wa ndani wa wanyama wanaoishi. Mbali na kuthibitisha kwamba aina hii ya rewiring ya ubongo inawezekana, utafiti utasababisha aina mpya za matunda ya kuruka na genetics ya kipekee ambayo inaweza mara moja kuwa pamoja na watafiti wengine. Kwa kubuni, zana hizi zinaweza kubadilishwa kwa urahisi kwa matumizi katika mfano wowote wa wanyama au kutumika kwa sehemu mbalimbali za ubongo, na kuwezesha darasa jipya la masomo ya neurological kwa maana kubwa kwa ufahamu wetu wa jinsi akili za binadamu zinavyofanya kazi.

Sam Sober, Ph.D. , Profesa Mshirika, Idara ya Biolojia, Chuo Kikuu cha Emory

Muhannad Bakir, Ph.D., Profesa, Shule ya Uhandisi wa Umeme na Kompyuta na Mkurugenzi Mshirika, Kituo cha Kuunganisha na Ufungashaji, Taasisi ya Teknolojia ya Georgia

"Flexible electrode arrays kwa rekodi kubwa ya spikes kutoka nyuzi misuli katika uhuru tabia panya na nguruwe za wimbo"

Uelewa wetu wa jinsi ubongo unaohusisha shughuli za misuli wakati wa tabia wenye ujuzi umepunguzwa na teknolojia iliyotumika kurekodi shughuli kama hiyo - kwa kawaida, waya zinaingizwa kwenye misuli ambayo inaweza tu kuchunguza shughuli iliyohitimishwa ya ishara nyingi za kibinafsi ambazo mfumo wa neva unatumia ili kudhibiti misuli. Madaktari. Sober na Bakir wanaendeleza kile ambacho kimsingi ni "ufafanuzi wa juu" sensor safu (mkusanyiko wa sensorer ndogo ndogo) ambayo huamua masuala mengi kwa kuruhusu watafiti kuchunguza na kurekodi ishara sahihi za umeme kutoka nyuzi za misuli ya mtu binafsi.

Sensor iliyopendekezwa ina detectors nyingi ambazo hurekodi kutoka kwenye misuli bila kuharibu. (Mipango ya awali ilitegemea waya ambayo inaweza kuharibu misuli wakati imeingizwa, hasa misuli ndogo inayotumiwa kwa ujuzi mzuri wa magari.) Vipande vilijengwa kutoka vifaa vinavyotumiwa vinavyofaa kulingana na sura ya misuli na mabadiliko kama mnyama huenda. Zaidi ya hayo, kwa sababu vitu vinavyokusanya data zaidi ya vifaa zaidi kuliko vifaa vya awali, wamejenga mzunguko wa kukusanya na kukusanya data kabla ya kupeleka ishara kwenye kompyuta ya mtafiti.

Toleo la mfano wa safu tayari limefunua ufahamu mpya: hapo awali, iliaminika kuwa mfumo wa neva hudhibiti shughuli za misuli kwa kudhibiti tu idadi ya spikes ya umeme iliyotumiwa kwenye misuli. Lakini kugundua kwa usahihi umebaini kuwa tofauti za millisecond-ngazi katika mifumo ya muda wa miwiba hubadili jinsi tabia za kudhibiti misuli. Mipango mpya itaundwa kwa ajili ya matumizi katika panya na wimbo wa wimbo na itatusaidia kuelewa udhibiti wa neural wa tabia nyingi za ujuzi na uwezekano wa kutoa ufahamu mpya katika matatizo ya neva ambayo yanayoathiri udhibiti wa magari.


Jose M. Carmena, Ph.D., Profesa, Idara ya Uhandisi wa Umeme na Sayansi za Kompyuta, na Taasisi ya Neuroscience ya Helen Wills, Chuo Kikuu cha California Berkeley

Michel M. Maharbiz, Ph.D., Profesa, Idara ya Uhandisi wa Umeme na Sayansi za Kompyuta, Chuo Kikuu cha California Berkeley

Neural Dust: ultrasonic, nguvu ya chini, teknolojia ya miniature uliokithiri kwa rekodi za neural zisizo na waya na untethered katika ubongo

Madaktari. Carmena na Maharbiz wanajumuisha kuunda kizazi kijacho cha interface ya ubongo (mashine ya BMI) kwa kutumia kile kinachojulikana kama "vumbi vya neural" -inachoweza kupandwa, kinunu, ultrasonic sensorer ambazo zinaweza kuondokana na haja ya waya zinazoingia kwa fuvu, na kuruhusu kwa untethered, rekodi halisi ya wireless cortical. Wakati watafiti katika maabara yao pamoja na wenzake wengine katika Idara ya Chuo Kikuu cha California Berkeley ya Uhandisi wa Umeme na Kompyuta za Sayansi na Taasisi ya Neuroscience ya Helen Wills wanajifunza uwezekano wa teknolojia ya vumbi vya neural kama kutumika kwa misuli na mfumo wa neva wa pembeni, fedha kutoka McKnight itawawezesha watafiti kutumia dhana hii kwa mfumo mkuu wa neva, njia wanayoamini inaweza kugeuza neurology kwa namna hiyo hiyo pacemaker ilipunguza mapigo ya cardiology. Kupitia operesheni ya kufungwa kwa teknolojia ya vumbi vya neural, Carmena na Maharbiz wanafikiri wakati ujao ambao ubongo unaweza kufundishwa au kutibiwa ili kurejesha kazi ya kawaida baada ya kuumia au kuanza kwa ugonjwa wa neva.

Ali Gholipour, Ph.D., Profesa Msaidizi wa Radiolojia, Shule ya Matibabu ya Harvard; Mkurugenzi wa Utafiti wa Radiology Translational, na mwanasayansi wa wafanyakazi katika Maabara ya Radiolojia ya Maabara, katika Hospitali ya Watoto wa Boston

Teknolojia ya kujifurahisha imara kwa uchambuzi wa kiasi cha maendeleo ya ubongo mapema 

Mwendo wa fetusi, watoto wachanga, na watoto wachanga husababisha changamoto maalum kwa watafiti walizingatia picha ya juu ya kuchambua maendeleo ya ubongo na kutambua kuharibu iwezekanavyo. Kundi la utafiti wa Dk Gholipour katika Maabara ya Maabara ya Radiolojia katika Hospitali ya Watoto wa Boston inajitahidi kuendeleza, kutathmini, na kusambaza teknolojia mpya na programu ambayo itawawezesha watafiti kujifunza na kuonyesha u-utero, kwa kila siku , na kazi ya utoto na utoto wa utoto mapema. Vifaa mpya vya kuchunguza picha na picha zinaweza kusababisha maboresho makubwa katika uwezo wa jamii ya neuroscience kukusanya na kuchambua data kubwa ili kuboresha uelewa wa maendeleo ya ubongo mapema na kuanzisha kiungo wazi kwa matatizo ambayo yanaweza kuanzia hatua za mwanzo za maisha.

Alexander Schier, Ph.D., Leo Erikson Sayansi ya Maisha Profesa wa Biolojia ya Masi na Milibabu, Idara ya Biolojia Masi na Milibabu, Kituo cha Sayansi ya Ubongo, Chuo Kikuu cha Harvard

Kurekodi historia ya shughuli za neuronal kwa njia ya uhariri wa genome

Maabara ya Dk. Schier ni kutafuta teknolojia ya riwaya ya kuchunguza kama teknolojia za uhariri za genomic zinaweza kurekodi historia ya shughuli za neuronal. Njia iliyopendekezwa, iitwayo GESTARNA (kwa ajili ya uhariri wa genome wa vitu vinavyotakiwa kwa ajili ya kurekodi shughuli za neuronal), ina uwezo wa muda mrefu wa kurekodi shughuli za neuronal za mamilioni ya neuroni kwa muda uliopanuliwa. Kutumia zebrafish kama mfumo wa mfano, zana na dhana zinazozalishwa na Dk. Schier na timu yake inaweza hatimaye kutumiwa kwenye mifumo mingine ya neuronal ambayo uhariri wa genome na ufuatiliaji wa kizazi kijacho huwezekana. Mpokeaji wa zamani wa McKnight Foundation, Schier alipata utambuzi wa mapema ya kazi kama Mchungaji wa McKnight (1999-2002), na alikuwa mpokeaji wa Tuzo ya Ugonjwa wa Ubongo (2006-2008).


Kwanghun Chung, Ph.D.,  Taasisi ya Teknolojia ya Massachusetts

Upyaji wa seli za seli nyingi na uunganisho wao wa akili

Dk Chung na maabara yake yanatengeneza teknolojia mpya ili kuzalisha ramani ya ubongo ya kina, yenye ufumbuzi wa juu. Ataunganisha teknolojia mpya za usindikaji wa tishu na mbinu za maandishi ya maumbile. Ramani ya sasa ya ubongo ni azimio duni na haijakamilika; Uchunguzi wa Chung utaruhusu wanasayansi wa neuro kuchunguza molekuli nyingi, aina za seli, na mizunguko katika tishu moja. Dk. Chung anatumaini kwamba hii azimio la juu, ramani kamili ya ubongo itaharakisha kasi ya ugunduzi katika maombi mbalimbali ya neuroscience na kuwawezesha wanasayansi kutaja mifano ya ugonjwa wa wanyama kwa njia ya haraka na isiyo na maana.

Narayanan (Bobby) Kasthuri, Ph.D., MD, Chuo Kikuu cha Chicago na Argonne National Labs

Ubongo-X: Ramani za Nanoscale za akili zima kutumia synchrotron-based high-nishati x-rays

Maabara ya Kasthuri ya kutumia nguvu za X-rays kuunda ramani kamili na kamili ya ubongo. Wingi wa picha zilizozalishwa husababisha kiasi kikubwa cha data ambacho kinaweza kugawanywa ili kutambua eneo la kila neuroni, chombo cha damu, na sehemu ya ubongo. Kwa kuzalisha ramani za panya afya na akili za binadamu, wanasayansi wanaweza kuwafananisha na sampuli za patholojia ili kuelewa vizuri tofauti za seli na hatimaye ya synaptic katika ubongo wenye ugonjwa walioathirika na autism, ugonjwa wa kisukari na kiharusi, kati ya magonjwa mengine.

Stephen Miller, Ph.D., Shule ya Matibabu ya Chuo Kikuu cha Massachusetts

Kushinda vikwazo vya kufikiri kwenye ubongo

Kuchunguza katika ubongo ni vigumu, kama wengi wa sulufu za molekuli hawawezi kuvuka kizuizi cha damu-ubongo (BBB). Dk. Miller na maabara yake wamepata njia za kuboresha imaging katika tishu za kina za ubongo kwa kugonga mali ya bioluminescent ya kimbunga. Timu ya Miller imebadilika chini ya kiberiti ya luciferin substrate ili kuongeza uwezo wake wa kufikia akili za wanyama hai. Mwangaza wa ubongo unaweza kutumika kutambua kujieleza kwa jeni, shughuli za enzyme, kufuatilia maendeleo ya ugonjwa, au kupima ufanisi wa madawa mapya.


Long Cai, Ph.D., Taasisi ya Teknolojia ya California

Kufafanua msingi wa Masi ya utambulisho wa kiini katika ubongo kwa kuiga samaki

Kazi ya Cai imeunda mbinu ya imaging ya juu inayotokana na "molekuli moja ya fluorescence in hybridization," au smFISH, ambayo inafanya uwezekano wa kuangalia taarifa za maumbile (kwa mfano RNA) ndani ya seli. Sasa anajaribu kurekebisha njia hii ili kuelezea kujieleza kwa jeni moja kwa moja kwenye ubongo kwa azimio sawa na kutumia FISH (seqFISH) tofauti.

Cynthia Chestek, Ph.D., Chuo Kikuu cha Michigan

Urefu wa wiani 90μ
mPiga safu ya kaboni microthread kutekodi kila neuron katika safu 5

Lebo ya Chestek inaendeleza njia ya kurekodi na kutazama taswira za afya, zinazounganishwa, za kazi kwa kipindi cha muda kwa wiani zaidi kuliko hapo awali. Kutumia electrodes ya nyuzi ya kaboni ya minuscule, ana mpango wa kurekodi neurons katika ubongo wa panya kutoka kwa safu za njia na kisha kupiga ubongo kutazama mzunguko mzima. Lengo ni kufikia safu ya kituo cha 64 ambayo inaweza kuzingatiwa kwa wiani mkubwa kwa kutumia kiungo cha kawaida cha neuroscience.

Spencer Smith, Ph.D., Chuo Kikuu cha North Carolina katika Chapel Hill

Picha ya Multiphoton kwa kiasi kikubwa cha ubongo

Neurons moja hufanya pamoja kwa njia ngumu ili kuunda mawazo na tabia. Imaging Multiphoton, ambayo inaweza kutatua neurons binafsi kutoka millimeters mbali, inaonekana kutoa njia ya ubunifu ya kujifunza mchakato huu. Kuchora kwenye utafiti uliopita na microscopy ya photon mbili, maabara ya Spencer inajaribu kujenga mfumo wa macho wa desturi ili kufikia neuroni milioni 1 wakati wa kubaki uwezo wa kuchunguza neuroni kila mmoja.


Juan Carlos Izpisua Belmonte, Ph.D., Taasisi ya Salk ya Mafunzo ya Biolojia

Kutoroka, sifa na mabadiliko ya jeni ya mistari ya kawaida ya marmoset ya kawaida ya gesi chini ya hali ya riwaya

Labia ya Izpisua Belmonte inafanya kazi ili kupunguza muda unaohitajika wa kuendeleza mifano ya wanyama wa kibinadamu yasiyo ya binadamu-hasa marmosets. Belmonte imetengeneza mkakati wa kuwezesha kizazi cha mifano ya transgenic marmoset kwa kutumia seli za majimaji muhimu (PGCs). Utafiti huo una uwezo wa kutoa rasilimali za seli za ukomo ili kujifunza maendeleo ya kiini cha kijivu katika sahani na, pamoja na zana za uhariri za genome, mbinu inaweza kusaidia kuunda mifano ya wanyama mpya kwa magonjwa ya kibinadamu.

Sotiris Masmanidis, Ph.D., Chuo Kikuu cha California, Los Angeles

Microprobes ya silicon kwa ufuatiliaji wa mienendo ya ubongo ya mesoscale

Kazi ya Masmanidis inaendeleza vifaa vya silicon-msingi, au microprobes, ambayo inaweza kufanywa kwa urahisi kwa njia ya uzalishaji wa wingi na inaweza kurekodi neurons nyingi kwa wakati mmoja katika azimio la millisecond. Microprobes itawezesha Masmanidis kujifunza jinsi seli nyingi za ubongo zinavyoingiliana wakati wa tabia na kujifunza. Kwa kuongeza, maabara yake yatakuwa mbinu za upainia kwa kusafirisha maeneo ya kurekodi kwa usahihi, kuboresha usahihi wa ramani ya shughuli za ubongo.

Kate O'Connor-Giles, Ph.D., Chuo Kikuu cha Wisconsin, Madison

Kitambulisho cha CRISPR / Cas9 kwa uchambuzi kamili wa mzunguko wa neural

O'Connor-Giles inataka kuendeleza toolkits za kawaida kwa molecularly kutambua na kupata udhibiti wa maumbile ya subtypes neuronal. Vifaa hivi hutoa rasilimali muhimu kwa kutaja michango ya kazi ya jeni kwa utambulisho wa neuronal na subtypes ya neuronal kwa tabia. Maabara ya O'Connor-Giles yatatumia teknolojia hizi ili kuelewa jinsi neurons waya pamoja wakati wa maendeleo. Kazi hujenga mafanikio ya hivi karibuni ya maabara inachukua teknolojia ya uhandisi ya jenasi ya CRISPR / Cas9 katika vipande vya matunda.


Thomas R. Clandinin, Ph.D., Chuo Kikuu cha Stanford

Njia ya maumbile ya ramani ya mitandao ya neuronal inayoelezwa na synapses ya umeme

Wengi wa utafiti juu ya mzunguko wa ubongo umekwisha kulenga synapses ya kemikali, ambayo ni rahisi kujifunza kuliko synapses ya umeme. Lakini picha hii isiyo kamili ya waya wa ubongo huzuia jitihada za kuelewa mabadiliko katika shughuli za ubongo. Clandinin inapendekeza kuendeleza njia inayozalisha, ya maumbile ya kuamua ambayo neurons huunganisha umeme kwa wengine. Mwishoni mwa kipindi cha ruzuku cha miaka miwili, anatarajia kuwa na seti ya kazi ya nzizi za matunda dhambi pamoja na utafiti wa uhusiano maalum wa umeme katika ubongo wa kuruka, na zana zinazofanana tayari zilizopimwa kwenye panya.

Matthew J. Kennedy, Ph.D., na Chandra L. Tucker, Ph.D., Chuo Kikuu cha Colorado - Denver

Vifaa vya macho ya kuendesha synapses na nyaya

Optogeneticsis shamba jipya ambalo linahusisha kudhibiti kazi ya neuronal na mwanga. Kennedy na Tucker wanatarajia kupanua shamba kwa uhandisi zana mpya ambazo zitaruhusu watumiaji kutumia nuru kudhibiti udhibiti chini ya mto kutoka kwa kukata neuronal, kwa lengo la kuashiria molekuli muhimu kwa ajili ya malezi ya synapse, kuondoa na plastiki. Pia hupanga kuendeleza zana ambazo zinawawezesha watumiaji kuendesha njia za msingi za Masilizi zinazohusika na kujifunza na kumbukumbu katika ubongo.

Zachary A. Knight, Ph.D., Chuo Kikuu cha California - San Francisco

Inatafuta neuromodulation na ribosomes engineered

Ubongo wa mamalia una mamia ya aina ya kiini cha neural, kila mmoja na mwelekeo tofauti wa kujieleza kwa jeni. Maabara ya Knight ni kujenga zana za ramani za matukio ya biochemical katika ubongo wa panya kwenye hii tofauti ya molekuli ya seli. Atakuwa na mbinu za kukamata RNA ambazo zinaweza kusaidia kutambua utambulisho wa Masi ya seli za msingi. Vifaa hivi itawawezesha wanasayansi wa neuro kutambua neurons maalum ambazo zinasimamishwa wakati wa mabadiliko ya tabia, physiolojia au magonjwa. Hizi seli zilizojulikana zinaweza kutumiwa kibadilishaji kuelewa kazi zao.


Don B. Arnold, Ph.D., Profesa Mshirika wa Biolojia & Matibabu ya Biolojia, Chuo Kikuu cha Kusini mwa California

Kucheua Vyombo vya Intrabodies kwa Utoaji wa Moja kwa moja wa Proteins Endogenous

Proteins hutengenezwa na kuharibiwa katika ubongo. Dr Arnold anafanya kazi kwa zana ili kuwawezesha wanasayansi kuendesha mchakato wa uharibifu wa protini kwa ajili ya utafiti wa biomedical. Vifaa hivi, vinavyojulikana kama intrabodies za ablating, vinaweza kupatanisha uharibifu wa haraka, ufanisi na maalum wa protini. Protein inaweza kuharibiwa ili kupima kazi yake katika seli za kawaida au kuchunguza athari za madhara ya protini fulani ya patholojia-kwa ugonjwa wa neurodegenerative, kwa mfano. Hivi sasa, wanasayansi wanaweza tu kusababisha uboreshaji wa protini kwa njia moja kwa moja, kwa kufuta jeni, au RNA, inayoingiza protini. Kupungua kwa intrabodies husababisha uharibifu wa moja kwa moja wa protini za lengo na hivyo kazi kwa haraka zaidi. Wanaweza pia kulenga protini kwa ufanisi fulani au wale walio na marekebisho maalum baada ya kutafsiri. Dk. Arnold atajaribu matumizi ya intrabodies iliyobaki kwa kutumia viungo vya protini ya maeneo ya postsynaptic kujifunza kazi ya synaptic, homeostasis na plastiki ndani ya ubongo. Utafiti huo, ikiwa unafanikiwa, unaweza kuwa na matumizi mingi katika sayansi ya biomedical.

James Eberwine, Ph.D., Profesa wa Pharmacology, na Ivan J. Dmochowski, Profesa Mshirika wa Kemia, Chuo Kikuu cha Pennsylvania

Kitambulisho cha TIV kinawezesha mifumo ya kweli ya Neuronal Genomics

Ingawa inawezekana kwa miaka kadhaa kujifunza kujieleza kwa jeni katika seli za mtu binafsi katika tamaduni za maabara, maendeleo ya kuendelea katika neurobiolojia inahitaji uwezo wa kuchunguza kazi na udhibiti wa maumbile kwenye kiwango cha mifumo, katika tishu zisizofaa au viumbe hai. Madaktari. Eberwine na Dmochowski wanatumia njia ya kutenganisha RNA kutoka seli zilizo hai kupitia njia waliyopata, inayoitwa TIVA-tag (kwa Transcriptome In Vivo Analysis). Wakati wa ruzuku, wao hupanga kupanga kemia ya misombo ya tag ya TIVA kukusanya RNA kutoka kwa seli zilizo na ufanisi zaidi, ufanisi na uharibifu wa tishu chini kuliko iwezekanavyo. Mwishoni mwa kipindi cha ruzuku wanatarajia kuanzisha mbinu ya TIVA-tag kama mbinu inayofaa kwa ajili ya jenereta za ngazi za mfumo.

Doris Tsao, Ph.D., Profesa Msaidizi wa Biolojia, Taasisi ya Teknolojia ya California, na William J. Tyler, Ph.D., Profesa Msaidizi katika Taasisi ya Utafiti wa Virginia Tech Carilion, Shule ya Uhandisi wa Biomedical na Sayansi

Mzunguko wa Kazi wa Ciract Brain Primate Brain kwa kutumia Ultrasound Pulsed

Neuroscience haipo chombo cha noninvasively kuchochea maalum 3D loci popote katika ubongo wa binadamu. Kazi ya awali na Dk Tyler ilionyesha kwamba neuromodulation ya ultrasonic inaweza noninvasively kuchochea neurons katika maisha ya ubongo ubongo. Hatua inayofuata ni kuonyesha jinsi ultrasound inathiri primate yasiyo ya binadamu, macaque, ambao ubongo ni mkubwa na ngumu zaidi kuliko ile ya panya. Watafiti hupanga kuchunguza majibu ya neuronal, mtiririko wa damu ya ubongo, na tabia ya wanyama wakati wa neuromodulation ya ultrasonic. Hatimaye, Drs. Tsao na Tyler wanalenga kuendeleza njia ya kutumia ultrasound ili kuchochea maeneo maalum ya ubongo wa binadamu, ambayo itatoa zana mpya ya nguvu ya kuelewa mzunguko wa ubongo katika wanadamu, na kutoa mikakati ya riwaya ya kutibu maradhi ya kisaikolojia na ya akili.

Samweli S.-H. Wang, Ph.D., Profesa wa Biolojia ya Masi, Chuo Kikuu cha Princeton

Kupitisha Vikwazo vya Nguvu za Viashiria vya Calcium zinazoweza kuzalishwa

Protini za fluorescent zinazobadili mwangaza wao wakati seli za ubongo zinafanya kazi ni muhimu katika kuchunguza shughuli za neural za msingi, mtazamo, na michakato mingine ya utambuzi. Matoleo ya sasa ya protini hizi hujibu tu kwa uvivu, kwa muda wa mizani ya pili au zaidi. Maabara ya Dr. Wang ni upya tena protini hizi ili kujibu kwa haraka zaidi na kwa shughuli mbalimbali pana. Pamoja na mbinu za juu za macho, maendeleo hayo yataruhusu sehemu ndogo za tishu za ubongo zifuatiliwe kwa njia ambayo fMRI imaging inafuatilia ubongo wote-na faida kuwa njia mpya itawawezesha watafiti kuona seli moja na mabadiliko yanayotokea zaidi ya milliseconds. Utafiti huu ni sehemu ya jitihada kubwa kwa wanasayansi wa neva wanaotengeneza teknolojia ya kujifunza mitandao ya ubongo wakati mnyama anajifunza, au kuona nini kinachoenda vibaya kwa wanyama wenye kasoro ya neva.


Sandra Bajjalieh, Ph.D., Profesa wa Pharmacology, Chuo Kikuu cha Washington

Kuendeleza Biosensors kwa Lipids Signaling

Mabadiliko katika lipids ya membrane hufanya jukumu katika ishara ya neuronal, lakini watafiti hawawezi bado kutegemea kufuatilia uzalishaji wa lipid. Bajjalieh mipango ya kuzalisha sensorer kufuatilia kizazi cha signal lipids katika seli katika muda halisi. Yeye atengeneza protini ambazo zinamfunga kwa lipids mbili za ishara kwa kutokuwepo kwa ishara nyingine na kuzitumia kuendeleza probes za fluorescent kufuatilia eneo la lipids hizi. Taarifa hii itafanya iwezekanavyo kupanua njia ya lipids nyingine.

Guoping Feng, Ph.D., Profesa wa Sayansi ya Ubongo na Utambuzi, Taasisi ya McGovern ya Utafiti wa Ubongo, Taasisi ya Teknolojia ya Massachusetts

Kuendeleza Masi, Kijivu cha Maambukizi ya Kisiasa ya Microcircuti zilizoelezewa kwa tabia na utambuzi wa Kutambua Shughuli na Mwanga

Ili kujifunza kwa karibu zaidi jinsi ubongo unachunguza habari, Feng ni kuendeleza chombo cha kukamata idadi maalum ya neuronal iliyoanzishwa na tabia za wanyama ndani ya kipindi kifupi kilichoelezwa na mlipuko wa mwanga, na kuchagua seli za ubongo kwa mabadiliko ya maumbile kulingana na shughuli hiyo. Hizi seli zinaweza kisha kupimwa ili kupima ushiriki wao katika tabia. Ikiwa imefanikiwa, chombo kitawezesha wanasayansi wa neuro kuharibu kikundi chochote cha neuroni kilichoanzishwa na tabia maalum kwa kipindi kilichofafanuliwa.

Feng Zhang, Ph.D., Mtafiti, Taasisi ya McGovern ya Utafiti wa Ubongo; Mwanachama Msingi, Taasisi Mkubwa ya MIT na Harvard; Profesa Msaidizi wa Sayansi ya Ubongo na Utambuzi, Taasisi ya Teknolojia ya Massachusetts

Uhandisi wa Gome Wa Ufanisi Kutumia Wachuuzi wa TAL Waliyotumiwa

Maneno ya kizazi hutumiwa kwa kawaida kutambua aina ya neuroni, lakini uharibifu wa kawaida wa maumbile haufanyiki na ni mdogo kwa panya. Zhang inafanya kazi kwa njia ya kurekebisha genome ya neurons kwa kutumia jeni mwandishi ambayo inaweza kuletwa katika seli maalum na nyaya za ubongo. Teknolojia hii itawawezesha mabadiliko ya binadamu kuletwa katika mifano ya wanyama ili kuamua ikiwa mabadiliko ya maumbile husababisha ugonjwa. Teknolojia pia itafupisha muda inachukua ili kuzalisha mfano wa wanyama.


Michael Berry II, Ph.D., Profesa wa Biolojia ya Masi, Chuo Kikuu cha Princeton

Microfabricated kiraka clamp micropipette

Lebo ya Berry itaendeleza micropipette ya kamba ndogo ambayo itawawezesha majaribio ya riwaya yasiyowezekana kwa micropipettes ya kioo ya kawaida, kama vile uwezo wa kudhibiti urahisi mazingira ya kemikali ya neurons na dialysis ya haraka. Kifaa pia kitakuwa cha kuaminika zaidi na rahisi zaidi kuliko micropipettes zilizopo, kuokoa wakati na jitihada muhimu.

Robert Kennedy, Ph.D., Hobart H. Willard Profesa wa Kemia na Profesa wa Pharmacology, Chuo Kikuu cha Michigan

Katika ufuatiliaji wa viungo vya wasio na dhamana katika azimio ya juu ya muda na ya muda

Ili kupima neurotransmitters katika vivo kwa azimio ya juu ya muda na ya muda, lababara ya Kennedy inaendeleza probe miniaturized ambayo inaweza kufikia katika eneo lolote la ubongo wa panya ili kuzalisha sampuli ndogo za uchambuzi wakati wa muda mfupi. Teknolojia hii inatoa mafanikio ya uwezo wa neuroscience, kwa sababu kazi nyingi za maumbile na mifano nyingi ya ugonjwa ni msingi wa panya.

Timothy Ryan, Ph.D., Profesa wa Biochemistry, Weill Cornell Medical College

Maendeleo ya mwandishi wa habari wa ATP

Lab ya Ryan inaendeleza njia sahihi zaidi ya kupima mkusanyiko wa ATP katika vyumba maalum vya neuronal na kupata taarifa ya nguvu kwa ufuatiliaji ngazi za ATP wakati wa mawasiliano inayoendelea ya synaptic. Hii inapaswa kusaidia kuamua ikiwa usawa wa nishati ya msingi ni wazi katika magonjwa mbalimbali na jinsi vifaa vya ATP vimewekwa kwa kawaida katika synapses.

W. Daniel Tracey, Ph.D., Profesa wa Anesthesiology, Biolojia ya Kiini na Neurobiolojia, Chuo Kikuu cha Duke University

Vipimo vya rhabdoviruses vinavyotokana na kizazi kwa ajili ya ramani ya kazi ya conur nealonalnectivity

Labia ya Tracey inaendeleza mfumo wa kujieleza wa jeni ya virusi kuchunguza nyaya za neural katika kuruka kwa matunda. Lengo ni kutumia kwa maumbile kuendesha seli za ujasiri, kufuatilia uhusiano wao na kuendesha shughuli ya neurons zinazohusiana. Ikiwa hii imefanikiwa na nzizi za matunda, Tracey anatumaini mbinu hizo zitakuwa muhimu kwa masomo ya akili za mamalia.


Joseph Fetcho, Ph.D., Profesa wa Neurobiology na Tabia, Chuo Kikuu cha Cornell

Mipangilio ya ramani ya uhusiano wa synaptic katika vivo

Hakuna njia rahisi ya kufungua seli zote za ujasiri ambazo huunganisha kwenye seli nyingine wakati seli hizo zinaishi. Kufanya kazi na zebrafish, Fetcho inapendekeza kutumia mbinu za macho, ambapo njia zote za neuroni zilizounganishwa na seli fulani ya ujasiri zinaweza kurejea rangi, na kutengeneza muundo wa wiring katika mfumo wa neva wenye nguvu. Hatimaye, mbinu hiyo inaweza kusaidia kuonyesha mifumo ya wiring ambayo inasisitiza harakati na tabia nyingine.

Pavel Osten, MD, Ph.D., Profesa wa Neuroscience, Maabara ya Harusi ya Cold Spring

Iliyojitokeza anatomy high-throughput kwa ajili ya ubongo fluorescent ubongo

Mradi wa Osten unataka kusaidia daraja pengo kati ya utafiti wa kazi za ubongo za seli na seli na utafiti wa ubongo wote. Kutumia teknolojia ya picha ya riwaya, anasisitiza mabadiliko ya ramani katika circuits za neural katika panya ambazo hubeba mabadiliko ya maumbile yanayohusishwa na autism na schizophrenia. Ana matumaini teknolojia itatoa njia ya haraka, sahihi ya kujifunza mifano nyingi za mazao ya maumbile ili kuelewa vizuri aina mbalimbali za magonjwa ya akili ya kibinadamu.

Thomas Otis, Ph.D., Profesa wa Neurobiolojia, Chuo Kikuu cha Tiba cha Geffen, Chuo Kikuu cha California, Los Angeles

Maendeleo ya mbinu za macho kwa ajili ya ufuatiliaji wa voltage katika makundi ya neva ya neuroanatomically

Otis na wenzake, ikiwa ni pamoja na mchunguzi mkuu wa co-op Julio Vergara, wameanzisha teknolojia ya sensor ambayo inaruhusu mvuto wa ujasiri kupimwa kwa uaminifu wa juu kwa kutumia mbinu mpya za macho. Lengo la ruzuku ni njia kamili ya macho yao ili iweze kufuatilia shughuli za neural katika neurons nyingi wakati huo huo.

Larry J. Young, Ph.D., Profesa William P. Timmie wa Sayansi ya Psychiatric na Behavioral na Mkurugenzi wa Idara, Kituo cha Maarifa ya Neuroscience, Kituo cha Utafutaji cha Prikes ya Yerkes National

Maendeleo ya teknolojia ya transgenic katika milima ya milima ya kusambaza genetics na mzunguko wa neural wa uhusiano wa kijamii

Uchunguzi wa tabia mbaya za kijamii, kama vile uzazi wa uzazi na uhusiano wa kijamii, umepungua na ugumu wa kutumia jitihada za jeni ili kujifunza jinsi jeni maalum hudhibiti tabia ya kijamii. Vijana inalenga kuzalisha milima ya milima ya kijijini, ambayo ni ya kijamii sana, na kutambua jeni zinazohusika na tofauti tofauti ya tabia ya kijamii. Utafiti huo utakuwa na umuhimu fulani kwa matatizo kama vile autism na schizophrenia.


Henry Lester, Ph.D., Taasisi ya Teknolojia ya California

Njia za Ion za Uhandisi wa Neuronal

Lester itatumia njia za ion na vibataji ili kupata ufahamu wa jinsi neurons zilivyounganishwa ndani ya nyaya na jinsi tabia za kudhibiti nyaya hizo. Yeye atengeneza njia mpya za kupokea ambazo hujibu tu kwa madawa ya kulevya, ivermectin, ambayo yanaweza kutolewa katika mlo wa mnyama. Mara baada ya kukubalika haya, itawezekana kujifunza jinsi kuanzisha au kuzuia neurons zilizochaguliwa huathiri tabia.

Charles M. Lieber, Ph.D., Chuo Kikuu cha Harvard

Mipango ya Kifaa cha Nanoelectronic kwa Ramani ya Umeme na Kemikali ya Neural Networks

Lieber ana mpango wa kuendeleza na kuonyesha zana mpya za umeme za nanoteknolojia inayowezesha kupima umeme na biochemical kwa kiwango kikubwa cha synapses ya asili, kwa kutumia sampuli zikianzia mitandao ya neural iliyopandwa hadi tishu za ubongo. Kwa muda mrefu, zana hizi zinaweza kutumika kama miunganisho mapya yenye nguvu kati ya ubongo na vifaa vya maumbile ya neural katika utafiti wa biomedical na, hatimaye, matibabu.

Fernando Nottebohm Ph.D., Chuo Kikuu cha Rockefeller

Maendeleo ya Mbinu kwa Kufanya Nyimbo za Transgenic Songbirds

Kujifunza kwa kujifunza kwa sauti katika wimbo wa wimbo hutoa njia bora ya kuchunguza jinsi kumbukumbu zinavyohifadhiwa katika ubongo unaojulikana na jinsi uharibifu wa mfumo mkuu wa neva unaweza kutengenezwa na uingizwaji wa neuronal. Nottebohm inataka kuendeleza itifaki ya ufanisi wa uzalishaji wa ndege wa wimbo wa wimbo ili kuhakikisha ushirikishwaji wa jeni binafsi unaweza kuwa na kujifunza na ukarabati wa ubongo.

Dalibor Sames, Ph.D., na David Sulzer, Ph.D., Chuo Kikuu cha Columbia

Maendeleo ya Neurotransmitter ya Uongo wa Fluorescent: Sifa za Novel za Visualisation ya moja kwa moja ya Neurotransmitter kutolewa kutoka kwa Dhamana ya Presynaptic ya Mtu binafsi

Sames na Sulzer wameunda Neurotransmitters ya Uovu wa Fluorescent (FFN) ambayo hufanya kama tracers ya macho ya dopamine na kuwezesha njia ya kwanza ya kupima neurotransmission kwa kila mtu. Kutumia FFN, Sames na Sulzer wataendeleza mbinu mpya za macho kuchunguza mabadiliko ya synaptic yanayohusiana na kujifunza pamoja na taratibu za pathological zinazohusiana na matatizo ya neurological na ya kifedha kama vile ugonjwa wa Parkinson na schizophrenia.


Paul Brehm, Ph.D., Chuo Kikuu cha Afya na Sayansi ya Oregon

Protini ya kijani ya fluorescent ya kijani kutoka echinoderms inatoa rekodi ya muda mrefu ya shughuli za mtandao wa neuronal

Brehm ni kuchunguza njia mpya ya picha ya shughuli za mkononi katika tishu na afya. Anapendekeza mbadala ya protini ya kijani ya fluorescent ya jellyfish-Brittlestar brittlestar Ophiopsila, ambaye fluorescence ya muda mrefu katika seli za neva hutoa historia ya muda mrefu ya shughuli zao za mkononi.

Timotheo Mtakatifu, Ph.D., Chuo Kikuu cha Madawa ya Chuo Kikuu cha Washington

Sanaa ya picha ya macho ya mwelekeo wa neural ya tishu isiyojulikana

Mtakatifu ni kuendeleza njia za macho za kurekodi wakati huo huo kutoka kwa watu wengi sana wa neuroni kwa kutumia karatasi nyembamba za mwanga ambazo zinaweza kupima haraka tishu za ubongo katika vipimo vitatu. Ikiwa imefanikiwa, utafiti huo unaweza kusaidia wanasayansi kuchunguza kutambua mfano na kujifunza katika kiwango cha seli.

Krishna Shenoy, Ph.D., Chuo Kikuu cha Stanford

HermesC: Mfumo wa kurekodi wa neural unaoendelea kwa watoto wenye uhuru

Lebo ya Shenoy inajaribu kujifunza zaidi kuhusu jinsi neurons kutenda kwa kuendeleza miniature, kichwa-mounted, high-quality kurekodi mfumo kwa ajili ya matumizi juu ya nyani kwenda juu ya shughuli zao za kila siku. Ikiwa imefanikiwa, kazi hii itaunda kifaa cha kurekodi ambacho kinaweza kufuatilia neurons za mtu binafsi kwa kufanya nyani kwa siku na wiki.

Gina Turrigiano, Ph.D., Chuo Kikuu cha Brandeis

Kupiga ramani ya nafasi ya protini za synaptic kwa kutumia super-azimio fluorescence cryo-microscopy

Turrigiano na mshirika wake, David DeRosier, Ph.D., wataendeleza zana za kupima njia za protini za synaptic ambavyo hupangwa katika mashine za molekuli ambazo zinaweza kuzalisha kumbukumbu na kazi za utambuzi. Ikiwa hii inathibitisha mafanikio, hatimaye watakuwa na uwezo wa kuamua jinsi synapses zinavyosababishwa katika hali za magonjwa.


Pamela M. England, Ph.D.,Chuo Kikuu cha California huko San Francisco

Ufuatiliaji wa Biashara ya Receptor AMPA kwa Muda Halisi

Lebo ya Uingereza itaendeleza seti ya riwaya ya zana za Masi, kulingana na derivatives ya synthetic ya philanthotoxin, ambayo inaweza kutumika kuchunguza usafirishaji wa uso wa seli ya SUBPApe AMPA ya receptor ya glutamate. Lengo ni kuzalisha seti ya sumu inayotokana na sumu ambayo inachukua receptors AMPA na nyimbo maalum ya subunit, na hivyo kuwezesha uchunguzi wa pharmacological juu ya jukumu la makundi haya tofauti ya AMPA receptors katika neurons hai.

Alan Jasanoff, Ph.D., Taasisi ya Teknolojia ya Massachusetts

MRI ya Mfumo wa Kazi ya Mfumo na Wakala wa Kufikiria Kalsiamu

Jasanoff itachunguza njia ya riwaya ya Utendaji Magnetic Resonance Imaging (fMRI), iliyotengenezwa katika maabara yake, kwa kuzingatia nanoparticles ya oksidi ya chuma ambayo huzalisha tofauti ya picha wakati ya jumla. Ikiwa imefanikiwa, mbinu mpya itakuwa kipimo cha moja kwa moja cha shughuli za neural, na uwezo wa kuboresha azimio la muda na temporal katika fMRI.

Richard J. Krauzlis, Ph.D., na Edward M. Callaway, Ph.D., Taasisi ya Salk ya Mafunzo ya Biolojia

Kutumia Vectors Virusi kwa Probe Senseory-Motor Circuits katika Behaving Non-Binadamu Primates

Krauzlis na Callaway wataendeleza njia ya kuzuia sehemu ndogo za neurons katika mikoa ya eneo la kamba ya ubongo ya tumbili. Ikiwa ni mafanikio, njia yao itatoa njia za kutathmini jinsi tofauti ndogo ya neurons katika maeneo tofauti ya ubongo hufanya kazi katika nyaya ili kuwezesha kazi za ubongo za juu, kama vile mtazamo, kumbukumbu na udhibiti wa sensorer-motor.

Markus Meister, Ph.D., Cal Tech

Kurekodi wireless ya treni mbalimbali neuronal spike katika wanyama kwa uhuru kusonga

Meister na washirika wake, Alan Litke wa Chuo Kikuu cha California, Santa Cruz, na Athanassios Siapas wa Caltech, watajenga mfumo wa microelectrode isiyo na waya ambayo itawawezesha kurekodi ishara za umeme za neural kutoka kwa wanyama kwa uhuru bila kusonga waya. Kuchanganya teknolojia kwa ajili ya miniaturization na vifaa vya uzito, mfumo huu unapaswa kuwezesha kupima mienendo ya neural wakati wa tabia halisi ya asili, kama vile kukwama, kupanda au kuruka.


Karl Deisseroth, MD, Ph.D., Chuo Kikuu cha Stanford

Noninvasive, High High Resolution Udhibiti wa Shughuli za Neuronal Kutumia Kituo cha Ion cha Nuru-mwanga kutoka Alga C. Reinhardtii

Maabara ya Deisseroth, ikiwa ni pamoja na mshirika wa wenzake wa zamani wa Edward Edwardden, atakuwa na chombo kipya, kwa kuzingatia kiini chenye nuru ya ion ya mwanga kutoka kwa mwani, ili kuchochea shughuli za umeme katika seti maalum za neuroni na mwanga. Lengo lao ni kuchochea uwezekano wa hatua za kibinafsi kwa usahihi wa wakati wa millisecond na kudhibiti kile neurons ambacho huchochewa kwa kutumia mbinu za maumbile ili kulenga kujieleza kwa protini ya channel.

Samie R. Jaffrey, MD, Ph.D., Chuo Kikuu cha Chuo Kikuu cha Chuo Kikuu cha Cornell

Ufanisi wa muda halisi wa RNA katika Neurons ya Maisha Kwa kutumia Masiliko Makuu ya Fluorescent ya Kimwili

Maabara ya Jaffrey itaendeleza mfumo zaidi ili kuwezesha taswira ya RNA kwa kutumia microscopy ya kiini hai. Mbinu yake inategemea ujenzi wa mfululizo mfupi wa RNA ambao hufunga kwa fluorophore na kuongezeka kwa kiwango cha mwanga wake. Fluorophore hutoka kwa kutumika katika protini ya Fluorescent ya Green (GFP). Lengo ni kugeuza mapitio ya RNA kwa njia sawa na teknolojia ya GFP imebadilisha taswira ya protini.

Jeff W. Lichtman, MD, Ph.D., Chuo Kikuu cha Harvard Kenneth Hayworth, Howard Hughes Medical Institute ya Janelia Farm Campus Utafiti

Maendeleo ya Ukanda-Ultramicrotome wa Kukusanya Tape-Ultramicrotome kwa Ukarabati Mkuu wa Ubongo

Hayworth na Lichtman wanaendeleza chombo cha kipande na kukusanya moja kwa moja sehemu za maelfu ya tishu kwa ajili ya imaging kupitia maambukizi ya microscopy electron (TEM). Ujenzi wa sehemu ya vipengele vya TEM ni teknolojia tu iliyothibitishwa yenye uwezo wa kupiga ramani, kwa kiwango cha juu kabisa cha azimio, kuunganishwa halisi kwa synaptic ya neurons zote ndani ya kiasi cha tishu za ubongo. Lakini programu ni mdogo kwa sababu sehemu za ultrathin zinapaswa kukusanywa kwa mikono. Chombo hiki kitatengeneza mchakato, na kufanya ugawaji wa saruji kupatikana kwa maabara mengi na muhimu kwa kiasi kikubwa cha tishu.

Alice Y. Ting, Ph.D., Taasisi ya Teknolojia ya Massachusetts

Kuzingatia Biashara ya Protein ya Neuronal na Microscopy ya Optical na Electron Kutumia Biotin Ligase Labeling

Ting inapendekeza teknolojia ya kuboresha kuona na kupima usafirishaji wa protini ya membrane. Ameanzisha mbinu ya kuchaguliwa kwa enzyme yenye kutegemea enzyme ambayo inaweza kutofautisha molekuli zilizopo kwenye nyuso za neuroni kabla ya kuchochea kutoka kwa wale wanaoonekana baada ya kuchochea. Usambazaji wa anga wa molekuli zilizoandikwa zinaweza kuzingatiwa na picha za macho na, pamoja na marekebisho mengine, pia inaweza kuonekana katika azimio la juu na microscopy ya elektroni.


EJ Chichilnisky, Ph.D., Taasisi ya Salk
AM Litke, Ph.D., Taasisi ya Santa Cruz ya Fizikia ya Parti

Kupima Retina

Chichilnisky, mwanasayansi wa neva, na Litke, mwanafizikia wa majaribio, wanashirikiana na teknolojia ya kurekodi na kuchochea shughuli za umeme kwa mamia ya neuroni wakati kwa kiwango kizuri cha muda na wa muda. Hii itawawezesha kujifunza jinsi idadi kubwa ya mchakato wa neurons na encode habari ili kudhibiti mtazamo na tabia. Wao wanapanga mpango wa kujifunza retina, na, kwa upande mwingine, mifumo mingine ya neural.

Daniel T. Chiu, Ph.D., Chuo Kikuu cha Washington

Spatially na Solvents Solved Delivery of Stimuli kwa Single Neuronal seli

Nanocapsules ni ndogo "shells" ambayo inaweza kuwa na kitu kama dakika kama molekuli na kutoa kwa lengo kuchaguliwa. Chiu ni kuendeleza na kukamilisha aina mpya za nanocapsules na kusafisha zilizopo ili kujifunza jinsi seli moja ya neuronal inachukua kuwasili kwa ishara kwenye uso wake wa membrane. Nanocapsules itakuwa na manufaa katika mapambo ya protini ya uso wa seli na kuchunguza jinsi receptors kutuma ishara na husababisha maambukizi ya synaptic.

Susan L. Lindquist, Ph.D., Taasisi ya Whitehead ya Utafiti wa Biomedical

Maendeleo na Matumizi ya Mfumo wa Chakula cha Mchuzi kwa Magonjwa ya Neurodegenerative na Uchunguzi wa Kupitisha High

Lindquist inapendekeza kuchunguza magonjwa ya neurodegenerative kwa kujifunza jeni katika chachu ya waokaji. Kwa sababu ya mafanikio makubwa maabara yake imekuwa na kutumia chachu kama mfumo wa mfano wa kujifunza ugonjwa wa Parkinson, ana mpango wa kupanua mfano kwa madarasa mengine mawili ya ugonjwa - tauopathies (ikiwa ni pamoja na Alzheimer's) na spinocerebeller ataxia-3.

Daniel L. Ndogo, Jr., Ph.D., Chuo Kikuu cha California, San Francisco

Mageuzi ya Usimamizi wa Ion Channel Modulators kutoka Maktaba ya Kimbile na Iliyoundwa

Kidogo ni kazi juu ya mbinu mpya ya kutambua molekuli zinazozuia au kufungua njia za ion, protini ambazo ni muhimu kwa ishara za umeme katika ubongo. Atasoma peptidi za asili kutoka kwa viumbe venye sumu na atafanya molekuli-kama molekuli kupima. Kujenga molekuli ambazo huwafananisha wale wa asili na kuwafanya kupatikana kwa urahisi zitaongeza kasi ya kutafuta madawa ya kulevya ambayo yanaweza kutenda kwenye njia maalum za ion.

Stephen J. Smith, Ph.D., Chuo Kikuu cha Matibabu cha Stanford

Njia za uharibifu wa mzunguko wa ubongo na Microscopy ya Scanning ya Serial-Sectioning Scanning

Smith ni kubuni zana ili kuwezesha neuroscience kufaidika na kile anachoita darubini ya karne ya 21, zuliwa na mshirika wake, Winfried Denk, Ph.D., biophysicist katika Taasisi ya Max Planck. Wao wanajenga mbinu za kupima Serial-Sectioning Scanning Microscopy (S3EM) ambazo, kwa mara ya kwanza, zitatoa uwezo wa kuchambua nyaya kamili za ubongo kwa undani wa dakika. Smith ni kuendeleza njia za kudumu tishu za ubongo kwa uchambuzi na darubini hii, na zana za kompyuta za kuchambua kiasi kikubwa cha habari mbinu mpya zitazaa.


Stuart Firestein, Ph.D., Chuo Kikuu cha Columbia

Sensor Optical Encoded Optical ya Voltage Membrane

Firestein na mshiriki wake, Josef Lazar, Ph.D., wanapendekeza kuchunguza aina mpya ya protini ya kupima voltage ambayo inaweza kuchunguza matukio machache ya umeme na kutazama mabadiliko ya voltage katika idadi kubwa ya seli wakati huo huo. Hii inaweza kukuza kiwango cha uchunguzi katika usindikaji wa habari katika ubongo ambao kwa sasa hauwezi kufikia.

David Heeger, Ph.D., Chuo Kikuu cha New York

High-Resolution fMRI

Heeger na mshiriki wake, Souheil Inati, Ph.D., pamoja na wanasayansi wa Chuo Kikuu cha Stanford John Pauly na David Ress, mpango wa kuchukua mbinu mpya ya kuboresha nafasi ya anga ya imaging kazi ya magnetic resonance (fMRI) ili kuwezesha pia kupata data ya FMRI kwa azimio kubwa sana. Timu ina lengo la kusaidia kutatua baadhi ya matatizo ya msingi na MRI ya kawaida.

Paul Slesinger, Ph.D., Mlima Sinai / Icahn Shule ya Matibabu

G Protein Receptor Transfer Nishati (GRET) Mfumo wa Kufuatilia Utoaji wa Ishara katika Neurons

Mzunguko wa mawasiliano ya seli ya ujasiri hutokea wakati kemikali za nyuzi za kemikali zinamfunga aina maalum za receptors za neurotransmitter zilizohifadhiwa kwa G (G) ambazo zinawezesha protini za G. Ili kujifunza mabadiliko ya nguvu katika shughuli za protini za G wakati wa mawasiliano ya seli ya ujasiri, Slesinger inapendekeza kuendeleza detector ya makao ya msingi, ya fluorescent ya protini za G ambayo inategemea mali ya uhamisho wa nishati ya resonance ya fluorescence (FRET).


Bernardo Sabatini, MD, Ph.D., Shule ya Matibabu ya Harvard

Vyombo vya Optical kwa Uchambuzi wa Protein Tafsiri katika Makundi ya Neuronal Extrasomatic

Kuchunguza jinsi neurons kuanzisha njia za mawasiliano na jinsi ubongo kuhifadhi na kukumbuka habari, Sabatini ni kuendeleza molekuli ambayo hutoa mwanga wakati neurons kufanya protini, na microscope kuona mchakato ndani ndani ya ubongo hai.

Karel Svoboda, Ph.D., Maabara ya Hifadhi ya Cold Spring

Udhibiti wa Uingizaji wa Synaptic katika vivo na Ufafanuzi wa Kiwango cha Juu na wa Hali

Svoboda inaendeleza zana za Masi ili kuelewa zaidi jinsi synapses kuandaa circuitry ubongo.

Liqun Luo, Ph.D., Chuo Kikuu cha Stanford

Utoaji wa Neuron Msawazishaji na Uharibifu wa Maumbile katika Panya

Luo inafanya kazi kwa njia ya maumbile ya kuendesha na kufuatilia neurons moja katika panya kujifunza jinsi mitandao ya neural wamekusanyika wakati wa maendeleo na baadaye kubadilishwa na uzoefu.

A. David Redish, Ph.D .; Babak Ziaie, Ph.D.; na Arthur G. Erdman, Ph.D., Chuo Kikuu cha Minnesota

Usajili wa Wayahudi wa Neural Ensembles katika Amkeni, Behaving Rats

Washiriki-mwanasayansi wa neva, mhandisi wa umeme, na mhandisi wa mitambo-wanaendeleza njia ya wireless ya kurekodi treni za spike za neuronal kutoka kwa macho, tabia za panya ili kuongeza uelewa wa kujifunza na tabia.


Helen M. Blau, Ph.D., Chuo Kikuu cha Stanford

Inakabiliwa na Kidogo, Iliyoandaliwa kwa Gene kwa Mfumo wa neva wa kati

Labu ya Blau inachunguza njia za riwaya za kutoa jeni za matibabu kwa mfumo mkuu wa neva, kwa kutumia seli za moshi za mifupa zilizotengenezwa na jeni zinazoweza kulenga magonjwa.

Graham CR Ellis-Davies, Ph.D., Chuo Kikuu cha MCP Hahnemann

Ufanisi wa Maambukizi ya Neuroreceptors katika Vipande vya Ubongo Vipande na Ufungashaji wa Photon mbili wa Neurotransmitters

Ellis-Davies anaendeleza mbinu za ubunifu kufanya picha za vipengele vya ubongo ambazo hazijaonekana hapo awali, na kuunda aina ya wasio na neuro ambayo inabakia inerolojia ya kikaboni hadi kuanzishwa kwa mwanga mkali wa mwanga uliozingatia.

Dwayne Godwin, Ph.D., Shule ya Chuo Kikuu cha Wake Forest

Kuunganisha Minyororo ya Kuunganishwa Kazi na DNA ya Virusi

Kwa sindano za seli zilizo na DNA ya virusi, kupima kemikali kwa virusi, na kufuatilia kuenea kwa seli zilizounganishwa, Godwin anajaribu njia mpya za kuonyesha jinsi seli za ujasiri katika ubongo hutuma na kupokea ujumbe.

Seong-Gi Kim, Ph.D., Chuo Kikuu cha Matibabu cha Minnesota

Maendeleo ya Vivo Perfusion-msingi Columnar-azimio fMRI

Kim anafanya kazi ili kuongeza uwezo wa picha ya ufunuo wa magnetic resonance ili kujifunza shughuli za ubongo kwa undani zaidi.


Stephen Lippard, Ph.D., Taasisi ya Teknolojia ya Massachusetts

Kemikali Kemia Kuendeleza Sensorer Zinc kwa Probe Neurochemical Signaling

Lippard inafanya synthesizing sensor fluorescent riwaya ambayo itachunguza ions za zinc na oksidi ya nitriki katika seli zinazoishi na kufunua muundo wao wa anga.

Partha Mitra, Ph.D., na Richard Andersen, Ph.D., Taasisi ya Teknolojia ya California

Mbinu za Kuendeleza Kurekodi na Kusoma Idadi ya Idadi ya Watu katika Muda Halisi kutoka Mkoa wa Parietal Reach

Mitra na Andersen hutumia mbinu za hisabati kuchambua shughuli za ensembles ya neurons, wakitumaini hatimaye kuamua uhusiano kati ya shughuli za neural na tabia.

William Newsome, Ph.D., na Mark Schnitzer, Ph.D., Shule ya Chuo Kikuu cha Madawa ya Stanford

Katika Vivo Brain Dynamics Imejifunza na Fiber Optics na Optical Coherence Tomography

Schnitzer na Newsome (ambaye alipata tuzo maalum ya dola 50,000) wanajifunza mienendo ya ubongo kwa kupangia maeneo ya rekodi, kupiga ramani ya usambazaji wa alama za molekuli, na mifumo ya ufuatiliaji wa shughuli za ubongo kwa matumizi sahihi ya mwanga.

Timothy Ryan, Ph.D., Chuo Kikuu cha Chuo Kikuu cha Cornell, na Gero Miesenböck, Ph.D., Memorial Sloan Kituo cha Kansa ya Kufuta

Kubuni na Matumizi ya PH-Based Optical Sensing ya Shughuli Synaptic

Wanasayansi wanaendeleza viashiria vya riwaya za riwaya za shughuli za synaptic kulingana na unyeti wa mabadiliko katika asidi.

Daniel Turnbull, Ph.D., Chuo Kikuu cha Madawa ya Chuo Kikuu cha New York

Katika Vivo μMR Imaging ya Uhamiaji Neuronal katika Ubongo Mouse

Turnbull inafanya kazi kwa njia mpya ya kufikiri ili kutazama uhamiaji wa neurons katika ubongo unaoendelea wa ubongo, kuandika neurons mpya na kuwafuatia katika wanyama wa ndani kwa siku kadhaa na micro-magnetic resonance microimaging.


Michael E. Greenberg, Ph.D., na Ricardo E. Dolmetsch, Ph.D., Hospitali ya Watoto wa Boston

Teknolojia mpya za kujifunza Udhibiti wa Kiangilizi na Ulimwenguni wa Transcription na Tafsiri katika Neuroni Zisizofaa

Wanasayansi wanaendeleza njia ya kutazama shughuli za jeni katika seli za ujasiri, kwa kutumia amplifiers ya molekuli na kutambua fluorescence, kuona jinsi jeni huathiriana.

Paul W. Glimcher, Ph.D., Chuo Kikuu cha New York

Uchunguzi wa Neurosonography

Uchunguzi wa Glimcher huchunguza ultrasound ya uchunguzi ili iwezekanavyo uwekaji sahihi wa electrodes ya kurekodi katika ubongo wa macho, maziwa ya kazi.

Leslie C. Griffith, MD, Ph.D., na Jeffrey C. Hall, Ph.D., Chuo Kikuu cha Brandeis

Senseors za Transduction ya Muda Halisi

Griffith na Hall wanaendeleza sensorer za maumbile ambazo zinaweza kuletwa katika seli za ujasiri za kibinafsi za nzizi za matunda, kwa jitihada ya kuamua wakati kiini kinachukuliwa kufanya jukumu la tabia.

Warren S. Warren, Ph.D., Chuo Kikuu cha Princeton

Zero Quantum Kazi ya Upasuaji Magnetic Resonance

Jitihada ya Warren ya ujasiri inataka kufanya fMRI kuwa na nguvu zaidi, na kuongeza azimio lake zaidi ya mara 100, kuruhusu kufungua sehemu za ubongo kwa kina zaidi na kwa kulinganisha bora.