saltar al contenido

Awardees

2021-2024

Rui Chang, Ph.D., Profesor Asistente, Departamentos de Neurociencia y de Fisiología Celular y Molecular, Facultad de Medicina de la Universidad de Yale

Sreeganga Chandra, Doctor. Profesor asociado, Departamentos de Neurología y Neurociencia, Facultad de Medicina de la Universidad de Yale

Del intestino al cerebro: comprensión de la propagación de la enfermedad de Parkinson

La enfermedad de Parkinson es una enfermedad neurológica degenerativa ampliamente conocida pero aún misteriosa que afecta drásticamente la calidad de vida. Se desconoce exactamente cómo se inicia la enfermedad, pero investigaciones recientes indican que al menos algunos casos de Parkinson se originan en el intestino y se propagan al cerebro a través del nervio vago, un nervio largo, complejo y multifacético que conecta muchos órganos al cerebro.

El Dr. Chang y el Dr. Chandra están llevando este conocimiento de la propagación del intestino al cerebro al siguiente nivel con su investigación. Sus dos primeros objetivos buscan identificar exactamente qué poblaciones de neuronas vagales transmiten el Parkinson y el proceso por el cual el intestino y estas neuronas interactúan. El experimento utiliza un modelo de ratón, inyecciones de proteínas que pueden inducir la enfermedad de Parkinson y un nuevo proceso para marcar y eliminar selectivamente (apagar) tipos específicos de neuronas. A través de experimentos en los que se extirpan ciertas neuronas, se introduce la proteína y se examina a los ratones para detectar la enfermedad de Parkinson, el equipo se centrará en candidatos específicos. En el tercer objetivo, el equipo espera descubrir el mecanismo por el cual la enfermedad se transporta a nivel molecular dentro de las neuronas.

La investigación es un esfuerzo colaborativo e interdisciplinario que se basa en la experiencia del Dr. Chang en la investigación del nervio vago y el sistema entérico y en la experiencia del Dr. Chandra en la enfermedad de Parkinson y su patología. Se espera que con una comprensión mejor y más precisa de cómo la enfermedad llega al cerebro, se puedan identificar nuevos objetivos más alejados del cerebro para el tratamiento que sean más precisos, lo que permitirá que el tratamiento retrase o disminuya la aparición del Parkinson sin dañar el cerebro o afectando las muchas otras funciones importantes del nervio vago extraordinariamente complejo o del sistema entérico.

Rainbo Hultman, Ph.D., Profesor Asistente, Departamento de Fisiología Molecular y Biofísica, Instituto de Neurociencia de Iowa - Facultad de Medicina Carver, Universidad de Iowa

Conectividad eléctrica en todo el cerebro en la migraña: hacia el desarrollo de terapias basadas en redes

La migraña es un trastorno generalizado, a menudo debilitante. Es complejo y muy difícil de tratar; los pacientes tienen diferentes síntomas, a menudo desencadenados por hipersensibilidad sensorial, que pueden incluir dolor, náuseas, discapacidad visual y otros efectos. La migraña afecta a múltiples partes interconectadas del cerebro, pero no siempre de la misma manera, y los tratamientos a menudo no tienen el mismo efecto de persona a persona. La investigación del Dr. Hultman propone examinar las migrañas utilizando nuevas herramientas con el objetivo de iluminar nuevos caminos para el tratamiento.

La investigación se basa en el descubrimiento de su equipo de factores de electoma, mediciones de patrones de actividad eléctrica en el cerebro vinculados a estados cerebrales específicos. Usando implantes para medir la actividad cerebral en modelos de ratón que representan tanto la migraña aguda como la crónica, su equipo observará qué partes del cerebro de un ratón se activan y en qué secuencia en una escala de milisegundos por primera vez. El aprendizaje automático ayudará a organizar los datos recopilados, y los mapas de electoma creados se pueden usar para ayudar a identificar las partes del cerebro afectadas y cómo cambia el electoma con el tiempo, particularmente a través del inicio de la cronicidad. El experimento también examina los patrones de actividad eléctrica relacionados con la respuesta conductual; por ejemplo, las señales eléctricas observadas en el cerebro de un sujeto que busca evitar las luces brillantes pueden ofrecer una forma de predecir respuestas más graves a la migraña.

Una segunda parte de la investigación del Dr. Hultman utilizará las mismas herramientas para analizar cómo funcionan los tratamientos y profilácticos disponibles. Los factores de electoma de los sujetos tratados con estas terapias se recopilarán y compararán con los controles para identificar qué partes del cerebro se ven afectadas y de qué manera, ayudando a revelar el efecto de cada terapia / profiláctica, así como los efectos del dolor de cabeza por uso excesivo de medicamentos, un efecto secundario común experimentado por las personas que padecen migraña que buscan controlar su condición.

Gregory Scherrer, Ph.D., Profesor Asociado, Departamento de Biología Celular y Fisiología, Centro de Neurociencia UNC, Universidad de Carolina del Norte

Elucidar la base neural del dolor desagradable: circuitos y nuevas terapias para poner fin a la doble epidemia de dolor crónico y adicción a los opioides

El dolor es la forma en que nuestro cerebro percibe los estímulos potencialmente dañinos, pero no es una experiencia única. Es multidimensional, involucra transmisiones de los nervios a la médula espinal y el cerebro, procesamiento de la señal, activación de la acción reflexiva y luego seguimiento de la actividad neuronal involucrada en acciones para aliviar el dolor a corto plazo y procesos de aprendizaje complejos para evitarlo en el futuro.

El dolor también está en el centro de lo que el Dr. Scherrer ve como dos epidemias interrelacionadas: la epidemia de dolor crónico, que afecta a unos 116 millones de estadounidenses, y la epidemia de opioides que resulta del uso indebido de drogas poderosas y a menudo adictivas para tratarlo. En su investigación, el Dr. Scherrer busca descubrir exactamente cómo el cerebro codifica lo desagradable del dolor. Muchas drogas buscan afectar esa sensación de malestar, pero a menudo son demasiado amplias y también activan los circuitos de recompensa y respiración, lo que lleva a la adicción (y, por extensión, al uso excesivo) y al cierre respiratorio responsable de las muertes relacionadas con los opioides.

El equipo del Dr. Scherrer generará un mapa de los circuitos emocionales del dolor en todo el cerebro utilizando la captura genética y el etiquetado de neuronas activadas por el dolor con marcadores fluorescentes. En segundo lugar, se separarán las células cerebrales activadas y se secuenciará su código genético, en busca de receptores comunes en esas células que puedan ser objetivos de la terapéutica. Finalmente, la investigación investigará compuestos en bibliotecas químicas diseñadas para interactuar con cualquiera de esos receptores objetivo identificados; los efectos que esos compuestos tienen sobre el malestar del dolor; y si estos compuestos también conllevan riesgo de uso excesivo o afectan el sistema respiratorio. En última instancia, la intención es ayudar a encontrar mejores formas de aliviar todo tipo de dolor y mejorar el bienestar y la calidad de vida de los pacientes que lo experimentan.

Español de Perú