Zum Inhalt springen

Preisträger

2021-2024

Rui Chang, Ph.D., Assistenzprofessor, Abteilungen für Neurowissenschaften sowie für zelluläre und molekulare Physiologie, Yale University School of Medicine

Sreeganga Chandra, Ph.D. Assoziierter Professor, Abteilungen für Neurologie und Neurowissenschaften, Yale University School of Medicine

Vom Darm zum Gehirn: Die Ausbreitung der Parkinson-Krankheit verstehen

Die Parkinson-Krankheit ist eine weithin bekannte, aber immer noch mysteriöse neurologische degenerative Erkrankung, die die Lebensqualität dramatisch beeinträchtigt. Wie genau die Krankheit beginnt, ist unbekannt, aber neuere Forschungen zeigen, dass zumindest einige Parkinson-Fälle aus dem Darm stammen und sich über den Vagusnerv, einen langen, komplexen, facettenreichen Nerv, der viele Organe mit dem Gehirn verbindet, zum Gehirn ausbreiten.

Dr. Chang und Dr. Chandra bringen diese Erkenntnisse über die Ausbreitung von Darm zu Gehirn mit ihrer Forschung auf die nächste Ebene. Ihre ersten beiden Ziele zielen darauf ab, genau zu identifizieren, welche vagalen Neuronenpopulationen Parkinson übertragen und wie der Darm und diese Neuronen interagieren. Das Experiment verwendet ein Mausmodell, Injektionen von Proteinen, die Parkinson induzieren können, und einen neuartigen Prozess, um bestimmte Arten von Neuronen zu markieren und selektiv abzutragen (herunterzufahren). Durch Experimente, bei denen bestimmte Neuronen abgetragen, das Protein eingeführt und die Mäuse auf Parkinson untersucht werden, wird das Team auf bestimmte Kandidaten eingehen. Im dritten Ziel hofft das Team, den Mechanismus aufzudecken, durch den die Krankheit auf molekularer Ebene innerhalb von Neuronen transportiert wird.

Die Forschung ist eine kollaborative, interdisziplinäre Anstrengung, die sich auf Dr. Changs Erfahrung mit der Erforschung des Vagusnervs und des enterischen Systems sowie auf Dr. Chandras Fachwissen über die Parkinson-Krankheit und ihre Pathologie stützt. Es ist zu hoffen, dass mit einem besseren und genaueren Verständnis, wie die Krankheit das Gehirn erreicht, neue Ziele, die weiter vom Gehirn entfernt sind, für eine präzisere Behandlung identifiziert werden können, sodass die Behandlung den Beginn von Parkinson verzögern oder verringern kann, ohne das Gehirn zu schädigen oder Beeinflussung der vielen anderen wichtigen Funktionen des außerordentlich komplexen Vagusnervs oder des enterischen Systems.

Rainbo Hultman, Ph.D., Assistenzprofessor, Abteilung für Molekulare Physiologie und Biophysik, Iowa Neuroscience Institute - Carver College of Medicine, Universität von Iowa

Gehirnweite elektrische Konnektivität bei Migräne: Auf dem Weg zur Entwicklung netzwerkbasierter Therapeutika

Migräne ist eine weit verbreitete, oft schwächende Erkrankung. Es ist komplex und notorisch schwer zu behandeln; Betroffene haben unterschiedliche Symptome, die häufig durch sensorische Überempfindlichkeit ausgelöst werden und Schmerzen, Übelkeit, Sehstörungen und andere Auswirkungen umfassen können. Migräne betrifft mehrere miteinander verbundene Teile des Gehirns, jedoch nicht immer auf die gleiche Weise, und Behandlungen haben oft nicht die gleiche Wirkung von Person zu Person. Dr. Hultmans Forschung schlägt vor, Migräne mit neuen Instrumenten zu untersuchen, um neue Behandlungswege aufzuzeigen.

Die Forschung baut auf der Entdeckung von Elektrofaktoren durch ihr Team auf, Messungen elektrischer Aktivitätsmuster im Gehirn, die an bestimmte Gehirnzustände gebunden sind. Mit Implantaten zur Messung der Gehirnaktivität in Mausmodellen, die sowohl akute als auch chronische Migräne darstellen, wird ihr Team zum ersten Mal im Millisekundenbereich beobachten, welche Teile eines Mausgehirns in welcher Reihenfolge aktiviert werden. Maschinelles Lernen hilft bei der Organisation der gesammelten Daten, und die erstellten Elektomkarten können verwendet werden, um die betroffenen Teile des Gehirns zu identifizieren und wie sich das Elektom im Laufe der Zeit verändert, insbesondere durch das Einsetzen der Chronizität. Das Experiment untersucht auch elektrische Aktivitätsmuster, die an die Verhaltensreaktion gebunden sind. Beispielsweise können die im Gehirn eines Probanden beobachteten elektrischen Signale, die helles Licht vermeiden möchten, eine Möglichkeit bieten, schwerwiegendere Reaktionen auf Migräne vorherzusagen.

Ein zweiter Teil von Dr. Hultmans Forschung wird dann dieselben Werkzeuge verwenden, um zu untersuchen, wie verfügbare Therapeutika und Prophylaktika funktionieren. Elektomfaktoren von Probanden, die mit diesen Therapeutika behandelt wurden, werden gesammelt und mit Kontrollen verglichen, um festzustellen, welche Teile des Gehirns auf welche Weise betroffen sind, und um die Wirkung jedes Therapeutikums / Prophylaxe sowie die Auswirkungen von Kopfschmerzen bei übermäßigem Gebrauch von Medikamenten aufzudecken. A. häufige Nebenwirkungen von Migränepatienten, die versuchen, ihren Zustand zu behandeln.

Gregory Scherrer, Ph.D., außerordentlicher Professor, Abteilung für Zellbiologie und Physiologie, UNC Neuroscience Center, Universität von North Carolina

Aufklärung der neuronalen Grundlagen von Schmerzstörungen: Schaltkreise und neue Therapeutika zur Beendigung der dualen Epidemie von chronischen Schmerzen und Opioidabhängigkeit

Schmerz ist die Art und Weise, wie unser Gehirn potenziell schädliche Reize wahrnimmt, aber es ist keine einzige Erfahrung. Es ist mehrdimensional und beinhaltet die Übertragung von Nerven auf das Rückenmark und das Gehirn, die Verarbeitung des Signals, das Auslösen einer reflexiven Aktion und die anschließende Verfolgung der neuronalen Aktivität, die an Aktionen zur kurzfristigen Linderung des Schmerzes beteiligt ist, sowie komplexe Lernprozesse, um ihn zu vermeiden die Zukunft.

Schmerz ist auch der Kern dessen, was Dr. Scherrer als zwei miteinander verbundene Epidemien ansieht: die Epidemie chronischer Schmerzen, von der rund 116 Millionen Amerikaner betroffen sind, und die Opioid-Epidemie, die aus dem Missbrauch starker und oft süchtig machender Medikamente zur Behandlung resultiert. In seiner Forschung möchte Dr. Scherrer genau herausfinden, wie das Gehirn die unangenehmen Schmerzen codiert. Viele Medikamente versuchen, dieses Gefühl der Unannehmlichkeit zu beeinträchtigen, sind jedoch häufig im Ausland und lösen auch Belohnungs- und Atemkreise aus, was zu Sucht (und damit zu übermäßigem Gebrauch) und Atemstillstand führt, der für opioidbedingte Todesfälle verantwortlich ist.

Das Team von Dr. Scherrer wird eine hirnweite Karte der emotionalen Schmerzkreise erstellen, indem genetische Fallen und Markierungen von durch Schmerz aktivierten Neuronen mit fluoreszierenden Markern verwendet werden. Zweitens werden aktivierte Gehirnzellen abgetrennt und ihr genetischer Code wird sequenziert, wobei nach gemeinsamen Rezeptoren auf den Zellen gesucht wird, die möglicherweise Ziele für Therapeutika sind. Schließlich wird die Forschung Verbindungen in chemischen Bibliotheken untersuchen, die mit einem dieser identifizierten Zielrezeptoren interagieren sollen. die Auswirkungen dieser Verbindungen auf die Unannehmlichkeit von Schmerzen; und ob diese Verbindungen auch das Risiko einer Überbeanspruchung bergen oder das Atmungssystem beeinträchtigen. Letztendlich soll geholfen werden, bessere Wege zu finden, um alle Arten von Schmerzen zu lindern und das Wohlbefinden und die Lebensqualität der Patienten zu verbessern, die davon betroffen sind.

Deutsch